
ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Service based access to Oncosimulator -
report

Project Number: FP6-2005-IST-026996
Deliverable id: D 4.5
Deliverable name: Service based access to Oncosimulator - report
Submission Date: 20/07/2010

07/09/10 Page 1 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: ACGT

Project Full Name: Advancing Clinico-Genomic Clinical Trials on Cancer:
Open Grid Services for improving Medical Knowledge
Discovery

Document id: D 4.5

Document name: Service based access to Oncosimulator - report

Document type (PU, INT,
RE)

PU

Version: 1.0

Date: 20/07/2010

Editor:
Organisation:
Address:

Juliusz Pukacki
PSNC
pukacki@man.poznan.pl

Document type PU = public, INT = internal, RE = restricted

ABSTRACT:

The present document provides a description of Oncosimulator Service implementation.
It is the alternative way of accessing Oncosimulator code integrated into workflow
environment of ACGT.

KEYWORD LIST: Grid, grid services

MODIFICATION CONTROL

Version Date Status Author

0.1 10/03/2010 Draft Juliusz Pukacki

0.2 12.05.2010 Draft Juliusz Pukacki

0.3 20.07.2010 Draft Michał Krysiński

1.0 28.07.2010 Final Juliusz Pukacki

07/09/10 Page 2 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

List of Contributors
− Michał Krysiński, PSNC

− Stelios Sfakianakis, FORTH

− Giorgos Zacharioudakis, FORTH

− Paweł Spychała, PCNS

07/09/10 Page 3 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Contents

 ACGT ARCHITECTURE - OVERVIEW .. 8
 ACGT WORKFLOW ENVIRONMENT .. 8
 ONCOSIMULATOR SERVICE ... 10
 INTRODUCTION ... 13
 GENERIC ONCOSIMULATOR WEB SERVICE IMPLEMENTATION .. 13
 PROXY ONCOSIMULATOR WEB SERVICE IMPLEMENTATION .. 31

07/09/10 Page 4 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Illustrations
Illustration 1: ACGT architecture...8
Illustration 2: Workflow Enactment Architecture..9
Illustration 3: Oncosimulator services - overview..11
Illustration 4: Oncosimulator services - implementation details...12
Illustration 5: ACGT Web Service Wizard welcome screen...13
Illustration 6: Step 1..14
Illustration 7: Java2WSDL settings..15
Illustration 8: WSDL2Java settings..15
Illustration 9: Create new operation dialog..16
Illustration 10: Add argument dialog..17
Illustration 11: Add structure...17
Illustration 12: Structures dialog..18
Illustration 13: Structure editor..19
Illustration 14: Step 2..20
Illustration 15: Step 3..21
Illustration 16: Step 4..22
Illustration 17: Step 5..23
Illustration 18: Step 6..24
Illustration 19: Step 7..25

07/09/10 Page 5 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Executive Summary

ACGT is an Integrated Project (IP) funded in the 6th Framework Program of the European
Commission under the Action Line “Integrated biomedical information for better health”. The
high level objective of the Action Line is the development of methods and systems for
improved medical knowledge discovery and understanding through integration of biomedical
information (e.g. using modelling, visualization, data mining and grid technologies).
Biomedical data and information to be considered include not only clinical information
relating to tissues, organs or personal health-related information but also information at the
level of molecules and cells, such as that acquired from genomics and proteomics research.
ACGT focuses on the domain of Cancer research, and its ultimate objective is the design,
development and validation of an integrated Grid enabled technological platform in support
of post-genomic, multi-centric Clinical Trials on Cancer. The driving motivation behind the
project is our committed belief that the breadth and depth of information already available in
the research community at large, present an enormous opportunity for improving our ability
to reduce mortality from cancer, improve therapies and meet the demanding individualization
of care needs.

07/09/10 Page 6 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Introduction

The Oncosimulator is an advanced information system which is able to simulate the
response of tumours and affected normal tissues to therapeutic schemes based on clinical,
imaging, histopathologic and molecular data of a given cancer patient. It aims at optimizing
cancer treatment on a patient-individualized basis by performing in silico (on the computer)
experiments of candidate therapeutic schemes.
Oncosimulator is implemented as a standalone sequential application that can be compiled
and executed on computer running under Linux/Unix or Windows operating system. The
input required to run the application consists of the initial shape of the tumour and set of
parameters describing patient and treatment.
The basic and the most important scenario concerning Oncosimulator in ACGT project is a
grid execution of the code. For that purpose a dedicated end user application was developed
called OncoRecipeSheet. Using that interface researcher is able to define computational
experiment by describing multiple runs of the simulator with different parameters. He is also
able to search the results of a previous runs and visualize it in the same time.
In the background of the OncoRecipeSheet there is a ACGT grid infrastructure that takes
care of the execution of the code on some grid node based on current state of the grid
resources. The component responsible for the resource management is called GRMS
(Gridge Resource Management System). After the job is done it also handles transferring
output files to data management system of the grid called GDMS (Gridge Data Management
System). Files that are stored there can be downloaded by the user or can be used then by
visualization system to generate pictures or videos.
Because of the specific clients tool - OncoRecipeSheet - oncosimulator scenario is
separated from the rest of the ACGT scenarios that are accessed via portal client. Although
the integration is possible on the level of files in GDMS there is a need of much tighter
integration of the simulation with rest of ACGT instruments.
The main client tool for accessing ACGT infrastructure is the workflow environment. It
provides easy access to different services defined in the ACGT environment, and supports
defining of action flows between different components by connecting the output of one
service with the input of the other.
This deliverable describes the integration of the Oncosimulator application with the workflow
environment of ACGT.

07/09/10 Page 7 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Oncosimulator service in ACGT architecture

ACGT architecture - overview
Design view of the ACGT architecture presented on the picture below, consists of five main
horizontal layers.

The lowest one are the hardware resources where the computation is done and where
physical data is stored. The role of the next layer above the hardware resources is to provide
unified, remote access to physical resources. It provides basic functionality required for
remote computing and data access (job execution and control,basic authentication and
authorization, file transfer, databases access, hardware monitoring).
The last grid layer is Advanced Middleware Layer. It is responsible for providing more
advanced mechanisms in the Grid environment. Services from this layer can be described
as "collective" because they operate on set of lower level services, to realize more advanced
actions - e.g. metascheduling service that submits jobs to different local queuing systems
using Common Grid Infrastructure remote interfaces.
ACGT business process layer consists of components which are not aware of physical
resources and Grid environment. Grid is used as a whole, to perform more abstract actions,
and to get information required by end user. Services of this layer are using abstract
description of the world defined as some ontology. There are also services that are able to
translate high level description to language understandable by lower layer (grid) . It provides
higher level integration of different resources and data and makes them more similar to real
word objects. It also a layer where the Oncosimulator service should be placed.
The User Access Layer contains all application and tools that provide access to the ACGT
Environment for end user. There can be a wide variety of software, developed using different
technology (portals, standalone applications, clients dedicated to specific operation,
workflows editors, visualization tools). Client applications, are in the most cases tightly
connected to functionality provided by underlying layer.

ACGT workflow environment
Workflow environment of ACGT consists of two components: Workflow Enactor and
Workflow Editor. Workflow Enactor can be also called workflow engine because it is

07/09/10 Page 8 of 32

Illustration 1: ACGT architecture

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

responsible for managing of the execution of the submitted workflow. It is based on well
known and commonly used BPEL (Business Process Execution Language) technology, used
for describing components and precedence constrains among them.
Workflow editor is a GUI tool that allows a user to combine different ACGT services into
complex workflows. This tool is accessible through the ACGT Portal and therefore has a web
based graphical user interface. It supports the searching and the browsing of the available
services and data sources and their composition through some intuitive and user friendly
interface. The workflows created can be stored in a user’s specific area and later retrieved
and edited so new versions of them can be produced. The publication and sharing of the
workflows are also supported so that the user community can exchange information and
users benefit from each other’s research. Finally the workflow editor supports the execution
of the workflows and the monitoring of their enactment status
In designing and building the ACGT workflow environment the integration of the Grid security
to the workflow enactor proved to be the most challenging task. In particular, the workflow
engine should support the delegation of user rights so that all the services that participate in
a workflow are contacted by the enactor in the name of the end user with no need for the
user to be present during the workflow execution. What is more, there are numerous existing
third party services which it would be nice to be integrated in scientific workflows and which
do not support these security standards and it is neither possible nor desirable that these
services be re-implemented. Thus, what is needed is a design approach which permits the
mixture of heterogeneous systems. Taking into consideration that this mechanism must
conform also to legal requirements, it becomes obvious why it is challenging to comply with
the above and at the same time provide a functional, efficient and non-restrictive platform.
The incompatibilities between the BPEL processes and the GSI secured ACGT services can
be overcome by supplying the necessary layer of indirection: the Proxy Services. These
proxies or wrapper services provide BPEL friendly facades of the original, real ACGT
services, effectively working as calls transformation bridges between the two worlds.

The core idea behind wrapper services is that we transform the interface of the underlying
service and we pass extra pieces of information, which empowers us to detour the usual flow
of credential delegation and bypass the enactor. This information is an ID, unique for each
enactment, with which the proxy service can retrieve the delegated credentials and pass
them on to the service which is proxied. The BPEL workflow therefore is constructed in such
a way as to pass this extra parameter in every outgoing request. The value of this extra
parameter enters the BPEL engine through the Enactor Proxy: this is an inverse proxy
service that presents a GSI compliant interface of the BPEL workflow. The Enactor Proxy
saves the security context of the workflow enactment in the database and submits the

07/09/10 Page 9 of 32

Illustration 2: Workflow Enactment Architecture

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

corresponding database ID to the BPEL engine with the other parameters. The BPEL engine
accepts these parameters and forwards the ID to the Proxy Services, which, based on this
ID, subsequently retrieve the security context and make the GSI compliant request to the
real service.
The implementation of Proxy services depends a lot on the kind of the original service that
will be "proxied". From the above discussion we see two major uses of proxies:

• Implement the security delegation mechanism in an enactor transparent way. Since
this type of proxies provide the same functionality as the original services but they
also augment ("decorate") it with the proper security context we call them Decorators.

• Provide either a high level view of the original service functionality (e.g. as is the case
with OGSA-DAI services where we don't want the user to be aware of low level
details like "perform documents") or an enactor friendly interface (i.e. a WS-I
compliant web service interface). Let's call this specific type of proxies as Adapters

In either case the proxy service presents a modified WSDL interface to the enactor but the
details differ. The main difference is that in the case of credential delegation every operation
supported by the Proxy service must require an additional "enactmentId" parameter of type
(XML Schema) String. This parameter should have this exact name and type and should be
the first in the list of parameters of every operation of the Proxy service interface.
An additional point to make: A Proxy service could be very well both a Decorator and an
Adapter. In fact this is the case for the OGSA-DAI Data Access (Proxy) Services because
they require the user credentials to perform the delegation (and therefore the "enactmentId"
parameter) and they are also Adapters since their WSDL is a lot different than the OGSA-
DAI one.
The final thing to keep in mind is that Proxy services are contacted by the BPEL enactor so
their interface needs to comply with its requirements. In designing the web service interface
they are apparently many different WSDL styles. Nevertheless it seems that BPEL and the
Apache ODE Workflow Enactor specifically do not support Web Services implemented in
accordance to the RPC/Encoded style. The WS-I consortium also recommends against the
use of SOAP Encoding rules. The services implemented following the Document/Literal style
in WSDL are the ones that are fully compliant with BPEL and ODE. Furthermore the BPEL
transformation tool employed by the ACGT Workflow Editor works with the WDSL version
1.1 and its SOAP 1.1 binding.

Oncosimulator service

There are two different strategies to implement Oncosimulator service depending on the way
how the simulation code is executed

• incorporate simulation code into service
• create a service as a wrapper for grid execution of the oncosimulator code

The first solution is a very obvious and straightforward. The service itself includes the full
functionality of the Oncosimulator. The advantage of this approach is based on simplicity of
the implementation. But there are a lot of disadvantages: the simulation code that can be
very computationally intensive job is executed on the same machine as the one where the
service is deployed. It is also a solution very difficult to maintain - each change in the
simulation code have to be introduced in the service code immediately.
The second approach seems to be much more convenient. Service plays the role of the
wrapper for the grid execution of the simulation code. It is compliant with the basic
oncosimulator scenario and can take advantage of the currently available infrastructure.
Thus it is possible to exploit grid environment (resource management) for distributing
computational jobs all over the grid and for storing the results of the simulation (data
management)
The only clearly visible disadvantage of that solution is necessity of more implementation
effort to achieve required functionality.

07/09/10 Page 10 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Because of the limitations of the workflow environment described in a previous chapter two
services are required to be implemented:

• Generic Oncosimulator Service (GOS)
GOS is a service that is wrapping calls to grid infrastructure for submitting simulation
to the grid. The interface for running the simulation accepts parameters for the
simulation invocation including logical identifiers of the input data stored in Data
Management System of the grid (DMS). Also logical location of the output data
generated by the application must be provided. Upon the call service dynamically
creates proper job description for the grid metascheduler GRMS (Gridge Resource
Management System). Then job description (XML document) is submitted to GRMS
that is responsible for the execution of the application in the grid environment:
- finding proper computational node,
- creating execution environment,
- transferring input data,
- execution of the code,
- transferring output data to DMS

The call for running simulation is not a blocking one - it will not wait until the
computation is done. It returns as soon as GRMS give back the identifier of the job.
GOS implements the notification mechanism that is used for keeping a track for the
execution of the application in the grid. As soon as a status of the submitted job
changed GRMS is sending the information about it to GOS.
For its clients GOS provides interface for checking the current status of the
simulation. Status can be checked based on the identifier returned during submission
call.
GOS is implemented as a GSI enabled web service - it requires credential
delegation. Delegated credentials are used for job submission to the grid - GRMS
requires the credentials to be able to act on behalf of the end user.

• Oncosimulator Proxy Service (OPS)
As described in a previous chapter GSI enabled web services needs to be wrapped
with proxy service to be compliant with workflow environment of ACGT.
Additionally OPS interface can be tailored to the needs of end users responsible for

07/09/10 Page 11 of 32

Illustration 3: Oncosimulator services - overview

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

creation of workflows. Thus it has vary flexible design that allows easy development
and deployment different versions of service depending on user requirements.
OPS is also responsible for communication with DMS and creation of logical
identifiers of the files that GRMS will use for transferring output of the simulation.

07/09/10 Page 12 of 32

Illustration 4: Oncosimulator services - implementation details

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Implementation of service

Introduction
ACGT Web Service Wizard was used in the process of implementing the Oncosimulator web
services. It is a utility that facilitates the creation of GSI-enabled web services by automating
activities such as: deploying Axis and Java-WS-Core into Tomcat, configuring Tomcat,
generating WSDL file, stubs et etcetera. Rather than wasting time dealing with said
complexities, the developers using ACGT Web Service Wizard can focus on solving the
actual problem. This chapter describes the development of Oncosimulator services in detail.
Emphasis will be put on how ACGT Web Service Wizard was used in the process.

Generic Oncosimulator Web Service implementation

Using ACGT Web Service Wizard

Before starting ACGT Web Service Wizard, the user has to make sure that Java
Development Kit is installed and properly configured. In order to launch the application, user
needs to change directory to directory containing the file WebServiceWizard.jar and execute
the following command:

java -jar WebServiceWizard.jar
Alternatively, user can omit changing directory and specify full path to the jar file:

java -jar <path-to>/WebServiceWizard.jar

07/09/10 Page 13 of 32

Illustration 5: ACGT Web Service Wizard welcome
screen

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Illustration 5 shows the first screen of ACGT Web Service Wizard. At this point user decides
whether to create a new service or edit an existing one. Let's proceed by choosing the
former and clicking OK.

The panel shown in Illustration 6 is where the process of creating our service begins. Basic
information can be entered using input fields located in the upper-centre of the panel. In this
case we need to fill only the first two, namely Web Service name and Destination
package. Clicking Settings in the top-right corner of the panel will bring up a dialog that
allows you to configure WSDL2Java and Java2WSDL options (Illustrations 7 and 8). The
values of Location, Namespace and Namespace for implementation wsdl presented in
Illustration 7 are exemplary and can be modified according to your preference. Other values
need to be set exactly as shown to ensure interoperability. As for WSDL2Java settings, it is
advisable to keep default values.

07/09/10 Page 14 of 32

Illustration 6: Step 1

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

07/09/10 Page 15 of 32

Illustration 7: Java2WSDL settings

Illustration 8: WSDL2Java settings

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Next, we need to define the operations of our service. Only “runSimulation” operation will be
described here, as the remaining operations can be added analogically. Click Add to open
the Create new operation dialog (Illustration 5). Specify the operation's name and return
type by filling the corresponding fields. The dialog shown in Illustration 6 allows for adding
arguments of the operation. The value entered in the Name box must be a valid Java
variable name. If it is not, the ACGT Wizard will not produce a warning immediately, but an
error will occur when the application tries to generate a WSDL file. Also the value in the
Return type box has to conform to Java syntax.

07/09/10 Page 16 of 32

Illustration 9: Create new operation dialog

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

After we have defined all the operations we are back at the Step 1 panel.
Note that we used an array of NamedParameter as argument for the “runSimulation”
operation. It is not a standard Java type, so we need to define it. Open the structures dialog
(Illustration 11) by clicking Structures. Next, click Add, which will bring up the window
shown in Illustration 12. Fill in the fields and click Ok. In the newly opened window
(Illustration 13) type in the code of the data structure.

07/09/10 Page 17 of 32

Illustration 10: Add argument dialog

Illustration 11: Add structure

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

07/09/10 Page 18 of 32

Illustration 12: Structures dialog

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Clicking Next takes us to the Step 2 panel, where the code generated in the previous step is
displayed (Illustration 14).

07/09/10 Page 19 of 32

Illustration 13: Structure editor

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

In the Step 3 panel we can see the WSDL code generated in previous steps (Illustration 15).

07/09/10 Page 20 of 32

Illustration 14: Step 2

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

The next panel (Step 4 – Illustration 16) can be used to type in the business logic code for
the web service. The build-in editor does not offer advanced features such as code
completion or inspections, therefore it is inconvenient for implementing more complex
services. Luckily, in such cases we can use an IDE. Later in this chapter we will see how.

07/09/10 Page 21 of 32

Illustration 15: Step 3

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Next, we need to choose whether we want to deploy the service in a new container or an
existing one. If we choose the latter, we need to make sure that the target container is
properly configured (i.e. Axis and Java-WS-Core are deployed and configured and so on).
Let's go with the first option and allow ACGT Wizard to download and configure a Tomcat
instance for us (Illustration 17).

07/09/10 Page 22 of 32

Illustration 16: Step 4

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

In Step 6 (Illustration 18) we need to provide some deployment information such as Tomcat
installation location, paths to certificate and key to be used by the service, port on which the
service will listen for requests etc. After we have done that and pressed Next we are
informed that once Tomcat is restarted, the service is ready to use (Illustration 19).

07/09/10 Page 23 of 32

Illustration 17: Step 5

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

07/09/10 Page 24 of 32

Illustration 18: Step 6

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Using an IDE to develop ACGT services

It is possible to use an IDE to facilitate the process of implementing an ACGT web service's
business logic. All the Java files that were generated for the service can be found under:
$WSW_PATH/sources/$WS_NAME
where:
$WSW_PATH is the path to ACGT Web Service Wizard directory
$WS_NAME is the name of the web service
In order to use an IDE to develop services created with ACGT Web Service Wizard it is
advisable to:

1. Create a new project in the chosen IDE.
2. Set the project's sources directory to $WSW_PATH/sources/$WS_NAME
3. Set the following as project's library directories:

$TOMCAT_LOCATION/common/lib
$TOMCAT_LOCATION/webapps/acgt/WEB-INF/lib
$TOMCAT_LOCATION/webapps/acgt/WEB-INF/classes
where $TOMCAT_LOCATION is the location of the Tomcat instance installed by
ACGT Web Service Wizard

07/09/10 Page 25 of 32

Illustration 19: Step 7

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

4. Add any other libraries that the web service requires
5. Create an Ant build file that compiles the project's sources and replaces the service's

jar ($TOMCAT_LOCATION/webapps/acgt/WEB-INF/lib/$WS_NAME.jar) with a fresh
one. Note that the old jar needs to be excluded from classpath when building the new
one.

Generic Oncosimulator Service – interface

Generic Oncosimulator Service exposes the following operations:
• public String runSimulation(NamedParameter[] params)

As its name implies, this method is responsible for starting simulations. Generic
Oncosimulator Service does it by calling the submitJob operation of GRMS. The only
argument this method takes is a GRMS job description. It contains information that is
used by the resource management system in the process of executing the job (e.g.
name of the application to execute, its input parameters, files to stage in and out, etc.
). Rather than constructing a GRMS job description from scratch each time
runSimulation is invoked, Generic Oncosimulator Service uses templates that are
customized basing on the values passed in the params array. This approach allows
the service to easily adapt to changing requirements of the users. For example if
more parameters need to be passed to the Oncosimulator executable, the
administrator needs only to update the template file. The service does not have to be
rebuild and redeployed. Another important role of templates is the fact that they are
used for generating Oncosimulator Proxy Service. This process will be described
later in this chapter. The following is an excerpt from an exemplary template file:

<grmsJob appid="Oncosimulator">
<task persistent="true" taskid="WT_Run_001319_a_unpack_sim">

<executable count="1" type="single">
<execfile name="tar">

<url>file:////bin/tar</url>
</execfile>
<arguments>

<value>-xzf</value>
<value>oncosim.tar.gz</value>
<file name="oncosim.tar.gz" type="in">

<logicalId><![CDATA[oncosim_tar_gz_id:int]]
></logicalId>

</file>
</arguments>

</executable>
</task>

…
</grmsJob>

As the above fragment shows, an Oncosimulator Generic Service template slightly
differs from a regular GRMS job description. The important part is the following line:
 <logicalId><![CDATA[oncosim_tar_gz_id:int]]></logicalId>
When runSimulation is called, the service reads the template file and searches for
character data blocks. These blocks contain tokens, which have the following
structure:
[#][@attribute_name:]parameter_name:type_name
The square brackets are not part of a token, they indicate that the enclosed content
is optional. A CDATA block containing a token starting with # is omitted in the
process of creating a WSDL for Oncosimulator Proxy Service. This is useful when a
parameter is required to create a job description, but will not be directly provided by
the user. Another optional part of a token is @attribute_name. It indicates that when
a job description is created from a template, an attribute with name specified by

07/09/10 Page 26 of 32

file:///home/yulo/bin//tar

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

attribute_name and a value taken from the params array, will be added to the parent
element of the CDATA block containing such token. If there is no @attribute_name,
then a text node is added to the parent. The next part of a token is parameter_name,
which indicates the value in the params array that will be used when processing the
CDATA block. The parameter name needs to be unique for the entire template. If
there is no value in the params array corresponding to a parameter_name, an
exception will be thrown and simulation will not be started. Finally, type_name
indicates the data type of given parameter. It is insignificant in the creation of a job
description, but plays an important role in the process of creating a WSDL for
Oncosimulator Proxy Service. The following data types are supported: byte, int, long,
short, boolean, String, float, double.
Oncosimulator Generic Service makes use of the GRMS notifications system, which
allows for receiving information about job statuses using either web service interface
or sockets. Oncosimulator Generic Service uses the latter. The service itself does not
create sockets that listen for notifications each time a simulation is started. Instead,
only one socket is used to handle notifications for all simulations.
The pl.psnc.runsimulation.RunSimulationContextListener class implements the
javax.servlet.ServletContextListener interface, which contains methods that,
assuming proper configuration, are invoked during the container's start-up and
shutdown, namely contextInitialized and contextDestroyed. The first method is
responsible for creating a socket that listens for notifications and starting a thread
that handles the incoming information. The second method stops the said thread and
closes the socket when the server shuts down. In order to enable the
RunSimulationContextListener, changes have to be made to the ACGT webapp
configuration. The following excerpt from ACGT web.xml file shows the required
modification (in bold):

<web-app>
<display-name>WSRF Container Servlet</display-name>
<listener>

<listener-class>
pl.psnc.runsimulation.RunSimulationContextListener

</listener-class>
</listener>
...

</web-app>

Notifications were used mainly for performance reasons. Instead of calling GRMS
every time a call to getJobState occurs, the service returns the last status received
for the given job.
Generic Oncosimulator Service uses DMS to create files and directories required by
simulations.
The operation returns the GRMS job id of the simulation.

• public String getJobState(String jobId)
This operation allows for monitoring statuses of simulations started using the
runSimulation operation. Instead of calling GRMS to determine the job's status, it
relies on the notifiaction system as described earlier.

• public String getStateDescription(String jobId)
This operation calls getStateDescription on GRMS and returns its value.

All operations of Generic Oncosimulator Service perform call to other services (GRMS, DMS
) on behalf of the user by delegation of credentials. Before calling these services, Generic
Oncosimulator Service checks if the user is authorized to perform the requested operations.
It is done by calling getAuthorizationDecision on GAS. This means that privileges regarding
said services must be explicitly granted to the user by the GAS administrator.

Generic Oncosimulator Service - configuration

07/09/10 Page 27 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

The service can be configured using the file $TOMCAT_LOCATION/webapps/acgt/WEB-
INF/classes/config.properties. It is a regular properties file.
Following are supported properties and their meanings:
runsim.service.cert.path – path to file containing the certificate to be used by the service
runsim.service.key.path – path to file containing the key to be used by the service
runsim.service.gas.url – URL of a GAS instance
runsim.service.grms.url – URL of a GRMS instance
runsim.service.gas.dn – the distinguished name of the GAS instance identified by

 runsim.service.gas.url
runsim.service.grms.dn - the distinguished name of the GRMS instance identified by

 runsim.service.grms.url
runsim.service.template.file – path to simulation template file
runsim.service.notification.port – number of port used for receiving job status notifications

07/09/10 Page 28 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Proxy Oncosimulator Web Service implementation

Configuring the container
Proxy Oncosimulator Service uses the same container and libraries stack as Generic
Oncosimulator Service, however, some changes needed to me made to the server's
configuration to ensure compatibility with ACGT workflow engine. Following are the
aforementioned modifications:

• A connector allowing for unencrypted connections was added in
$TOMCAT_LOCATION/conf/server.xml.
<Server port=”8006” shutdown=”SHUTDOWN”>

...
<Service name="Catalina">

 <Connector acceptCount="100" connectionTimeout="20000"
disableUploadTimeout="true" enableLookups="false"

maxHttpHeaderSize="8192" maxSpareThreads="75"
maxThreads="150" minSpareThreads="25" port="8666"/>

...
</Service>

</Server>

• x509-based security was disabled for Globus Java-WS-Core as the following excerpt
from $TOMCAT_LOCATION/webapps/acgt/WEB-INF/etc/globus_wsrf_core/server-
config.wsdd shows:

<deployment name="defaultServerConfig" ...>
 <globalConfiguration>

…
<!--
 <parameter name="containerSecDesc"
 value="etc/globus_wsrf_core/global_security_descriptor.xml"/>

 -->
 …
</globalConfiguration>
...

</deployment>

It is also possible to set-up Tomcat from scratch, deploy Axis and add all required libraries.
This approach would be preferred for production environments.

Proxy Oncosimulator Service – interface

Proxy Oncosimulator Service implements the following operations:
• public String runSimulation(String enactmentId,...) invokes runSimulation of Generic

Oncosimulator Service and returns its result
• public boolean hasFinished(String enactmentId,String jobId) checks if the job

identified by jobId has finished by calling getJobState of Generic Oncosimulator
Service

• public ResultsStruct getResults(String enactmentId,String jobId)
returns logical ids of files containing results of the simulation identified by jobId

Proxy Oncosimulator Service WSDL and code

Because the list of parameters of runSimulation of Generic Oncosimulator Service could
vary with regard to used simulation template, the operation accepts an array of key/value
pairs as its only argument. This solution is very flexible and allows for using different

07/09/10 Page 29 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

simulation patterns without the necessity of recompiling and redeploying the service.
Unfortunately this approach was not feasible for the proxy service because of requirements
imposed by ACGT workflow engine. It implies that the proxy service needs to be modified
and rebuilt should any change affecting the parameters list occur in the simulation template.
An application was created to facilitate this process. It generates a WSDL file and code for
the proxy service basing on:

• simulation template file, which provides the list of parameters required by simulations
• WSDL template file, which contains WSDL code that is not affected by changes in

parameters list
• ProxyServiceSoapBindingImpl template file, which contains Java code that is not

affected by changes in parameters list
It may occur that some parameters that are not provided by the user directly or must be
processed before being passed to the generic service. In that case, relevant code needs to
be entered by a programmer.

Proxy Oncosimulator Sevice - configuration

The service can be configured using the file $TOMCAT_LOCATION/webapps/acgt/WEB-
INF/classes/config.properties. Following are the supported properties:
runsimulation.service.url – URL of Generic Oncosimulator service
runsimulation.service.dn – distinguished name of the service instance identified by

 runsimulation.service.url
dms.service.url – URL of IDataBroker service instance
dms.service.dn - distinguished name of the service instance identified by dms.service.url

07/09/10 Page 30 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

References

[1] Gridge Toolkit http://www.gridge.org
[2] ACGT D4.1 Prototype and report of the ACGT GRID layer
[3] D3.4 – The ACGT technical architecture: Final Specification

07/09/10 Page 31 of 32

ACGT FP6-026996 D4.5 – Service based access to Oncosimulator - report

Appendix A - Abbreviations and acronyms

API Application Programming Interface. The public interface provided by
libraries and services.

GDMS Gridge Data Management System. The grid-based file storage system
that is used in ACGT.

GAS Gridge Authentication Server. The authentication server that is used
within ACGT

GRMS Gridge Resource Management System

OGSA Open Grid Services Architecture

OGSA-
DAI

OGSA standard for Data Access and Integration. A middleware product
that supports the exposure of data sources onto the grid.

SVN Subversion, the version control system used within ACGT.

URI Uniform Resource Identifier. A string of characters that identifies or
names an object on the Internet. It is a generalisation of URL.

URL Uniform Resource Locator. A type of URI that specifies where a
resource is available, and the mechanism for retrieving it.

XML Extensible Markup Language. The format that is used by web services to
exchange data.

JMS Java Message Service

07/09/10 Page 32 of 32

